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1. Gaz doskonały w ujęciu teorii kinetycznej  

Gaz składa się z bardzo wielkiej liczby będących w ciągłym ruchu cząsteczek.  W modelu 
gazu doskonałego pomijamy rozmiary cząsteczek i przyjmujemy, Ŝe oddziałują one ze sobą 
tylko w trakcie zderzeń.  Zderzenia są doskonale spręŜyste i całkowicie przypadkowe.  

1.1. Ciśnienie i temperatura gazu doskonałego 

Wiadomo, Ŝe gaz wywiera ciśnienie na ścianki ograniczającego go pojemnika, a takŜe na co-
kolwiek, co znajdzie się wewnątrz tego pojemnika.  Odbicia cząsteczek gazu od ścianek po-
jemnika i czegokolwiek wewnątrz niego są przyczyną ciśnienia wywieranego przez gaz.  

RozwaŜymy cząsteczkę gazu doskonałego w pojemniku, którym będzie sześcian o boku L, 
pokazany na rys. 5.1.  

 

Rys. 5.1. Sześcienny pojemnik o boku L,  zawierający n 

moli gazu doskonałego.  Cząsteczka gazu doskonałego o 

masie m porusza się z prędkością v
r

 w stronę jednej ze 

ścianek pojemnika.  

 

Przyjmując, Ŝe zderzenie pokazanej na rys. 5.1. czą-
steczki ze ścianką pojemnika jest spręŜyste, zmiana 
składowej x pędu tej cząsteczki (inne składowe nie 
zmienią się w tym zderzeniu) wyniesie: 

( ) ( ) .mv2mvmvp xxxx −=−−=∆  

To oznacza, Ŝe cząsteczka przekazała ściance pęd xmv2+  (skoro całkowity pęd musi być 
zachowany).  Zmiana pędu w czasie to siła, a więc średnia siła F1 działająca na ściankę pro-
stopadle do niej, pochodząca od jednej cząsteczki wyniesie: 
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gdzie xvL2t =∆  jest czasem pomiędzy kolejnymi zderzeniami cząsteczki ze ścianką.  

Sumując po wszystkich N cząsteczkach znajdujących się w pojemniku otrzymamy wzór na 
ciśnienie P wywierane przez gaz na ściankę pojemnika: 
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Wprowadzimy średnią kwadratów składowych prędkości wszystkich cząsteczek: 
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otrzymamy:  
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Wprowadzimy prędkość średnią kwadratową:  
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i wyraŜenie na ciśnienie wywierane przez gaz przyjmie postać: 
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MnoŜąc obustronnie przez V otrzymamy: 
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gdzie, jak poprzednio, NA to liczba Avogadry.  

Porównując otrzymane wyraŜenie z równaniem stanu gazu doskonałego: 

TRnPV =  

widzimy, Ŝe są one identyczne, o ile:  
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czyli gdy:  
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gdzie k to stała Boltzmanna,   
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MoŜna stąd wyciągnąć wniosek, Ŝe teoria kinetyczno-molekularna gazu doskonałego daje 
uzasadnienie dla równania stanu gazu doskonałego i jednocześnie dostarcza interpretacji tem-
peratury bezwzględnej.  Temperatura bezwzględna to, zgodnie tą teorią, miara średniej ener-
gii kinetycznej cząsteczek gazu doskonałego.  Jasne staje się teŜ fizyczne znaczenie zera bez-
względnego; będzie to temperatura, w której ustaje całkowicie ruch cząsteczek.  

1.2. Prędkość średnia kwadratowa cząsteczek gazu doskonałego 

Z równania (2) wynika, Ŝe:  

,
M

TR3
v kw,sr =         (3) 
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gdzie M to masa jednego mola gazu, .mNM A ⋅=  

Teoria kinetyczno-molekularna daje zatem takŜe moŜliwość oszacowania średnich prędkości 
cząsteczek róŜnych gazów w róŜnych temperaturach.  W Tabeli 1 podano prędkości dla wy-
branych gazów w temperaturze pokojowej (300 K). 

TABELA 1. 

Gaz masa molowa 
(kg/kmol) 

vsr,kw 
(m/s) 

Wodór (H2)  2,02 1920 

Hel (He) 4,0 1370 

Para wodna (H2O) 18,0 645 

Azot (N2) 28,0 517 

Tlen (O2) 32,0 483 

Dwutlenek węgla (CO2) 44,0 412 

Dwutlenek siarki (SO2) 64,1 342 

 

1.3. Rozkład Maxwella prędkości cząsteczek gazu doskonałego 

Prędkość średnia kwadratowa:  

,
M

TR3
v kw,sr =         (3) 

jest wygodna dla wielu obliczeń, ale nie daje pełnej informacji o rzeczywistych prędkościach 
cząsteczek gazu.  Ze wzoru (3) moŜemy obliczyć, Ŝe prędkość kw,srv  dla molekularnego 

tlenu w temperaturze 300 K wynosi 483 m/s, ale by poznać odpowiedź na bardziej szczegó-
łowe pytania, np. jaka część wszystkich cząsteczek tlenu w temperaturze 300 K ma prędkości 
zawarte pomiędzy 590 i 610 m/s musimy poznać funkcję opisującą rozkład prędkości cząste-
czek tego gazu.  

Funkcja ta, P(v), podaje gęstość prawdopodobieństwa, Ŝe cząsteczka gazu ma prędkość o ści-
śle określonej wartości; jeśli prędkość ta ma być zawarta w przedziale v, v+dv, prawdopodo-
bieństwo wyniesie P(v)dv (np. wartość funkcji P(v) dla molekularnego tlenu w temperaturze 
300 K, dla v = 600 m/s wynosi 0,00131, a więc prawdopodobieństwo, Ŝe prędkość wybranej 
cząsteczki będzie zawarta w przedziale 590 – 610 m/s wyniesie 20x0,00131 = 0,0262, co 
oznacza takŜe, Ŝe 2,62% wszystkich cząsteczek ma prędkości zawarte w przedziale 590 – 610 
m/s).  Oznacza to, Ŝe ułamek wszystkich cząsteczek, których prędkości będą zawarte pomię-
dzy v1 i v2 będzie równy: 

ułamek = ( )∫
2

1

v

v

dvvP ,  

a całka po całym zakresie prędkości, od 0 do ∞ będzie równa 1,  
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Postać funkcji P(v) podał Maxwell w roku 1852: 
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Wyprowadzenie moŜna znaleźć w wielu róŜnych podręcznikach i materiałach dostępnych w 
Internecie (np. www.fizyka.umk.pl/~andywojt stare wykłady z termodynamiki technicznej, 
wykład 4).  Rozkład Maxwella dla rozpatrywanego wyŜej przykładu (tlen O2 w temperaturze 
300 K) pokazuje rys. 5.2. 

 

 

Rys. 5.2. Rozkład Maxwella prędkości 

cząsteczek tlenu w temperaturze 300 K.  

Na rysunku pokazano prędkość średnią 

kwadratową, 483 m/s.  Pole pod krzywą 

jest równe 1.  Pole powierzchni paska 

koloru karmazynowego jest równe 

prawdopodobieństwu, Ŝe prędkość wy-

branej cząsteczki jest zawarta w prze-

dziale 590-610 m/s (wyniesie ono 

0,0262).   

 

 

 

Wpływ temperatury na rozkład prędkości cząsteczek gazu ilustruje rys. 5.3, gdzie przedsta-
wiono rozkłady dla molekularnego tlenu w temperaturze 300 i 50 K.  Trend jest oczywisty; 
dla niŜszych temperatur rozkład przesuwa się w stronę niŜszych prędkości.   

 

 

Rys. 5.3. Rozkład Maxwella prędkości 

cząsteczek tlenu w temperaturze 300 K 

i 50 K.  Dla niŜszej temperatury pręd-

kości cząsteczek są wyraźnie mniejsze. 

Pole powierzchni pod obydwiema krzy-

wymi są równe 1.  

 

Maksimum kaŜdego rozkładu wy-
stępuje dla tzw. prędkości najbar-
dziej prawdopodobnej, vmax:  

,
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TR2
vmax =  (dP(v)/dv = 0) 
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która jest trochę mniejsza od prędkości średniej kwadratowej:  

kw,srmax v
2

3
v = . 

Największe znaczenie dla dalszych obliczeń, jak zobaczymy, ma prędkość średnia kwadrato-
wa, vsr,kw.  

1.4. Średnia energia kinetyczna ruchu postępowego cząsteczek gazu doskonałego 

W wyprowadzeniu równania (2) 

,
3

mv
nNTRn

2
kw,sr

A=  

prędkość średnia kwadratowa, vsr,kw, była prędkością przypisaną cząsteczce gazu doskonałe-
go, a nie tworzącym tę cząsteczkę atomom.  Dlatego w równaniu:  
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2
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___

kE  jest średnią energią kinetyczną pojedynczej cząsteczki, jest zatem związana z ruchem 
środka masy cząsteczki: 

_______
2
SM

___

k 2

mv
E = .   

Jest to waŜne, bo dla większej cząsteczki, np. dla cząsteczki dwuatomowej, moŜna takŜe mó-
wić o energiach kinetycznych atomów tworzących tę cząsteczkę.   Mówiąc o ruchu postępo-
wym cząsteczki gazu mamy na myśli ruch środka masy tej cząsteczki.  

Mamy zatem:  
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co oznacza, Ŝe średnie energie kinetyczne cząsteczek dwóch róŜnych gazów ale o tej samej 
temperaturze są sobie równe, nawet wtedy gdy masy tych cząsteczek są róŜne (róŜnica mas 
musi być skompensowana róŜnicą prędkości średnich kwadratowych, patrz Tabela 1).   

1.5. Energia wewnętrzna gazu doskonałego jedno- i dwuatomowego 

Energia wewnętrzna substancji odgrywa w termodynamice waŜną rolę, poniewaŜ wiąŜe się 
ona ze zdolnością i róŜnymi sposobami magazynowania energii termicznej przez tę substan-
cję.  

Energia wewnętrzna jednoatomowego gazu doskonałego będzie, przy braku oddziaływań 
pomiędzy atomami gazu: 
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gdzie N to liczba cząsteczek gazu w rozwaŜanej objętości V.  

Dla większych cząsteczek naleŜy uwzględnić energię kinetyczną związaną z obrotami oraz 
kinetyczną  i potencjalną związaną z oscylacjami.  Energia wewnętrzna będzie wobec tego 
zawierać następujące wyrazy: 
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2
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EEEkT
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3
N...

2

mv
NU +++⋅=+= . 

Pominięto w tym równaniu wkład elektronowy (od wzbudzeń elektronowych), który jest na 
ogół znacznie mniejszy od pozostałych.   

Rozpatrzymy teraz dokładniej gaz dwuatomowy.  Gaz dwuatomowy moŜna rozpatrywać jako 
szczególny przypadek mieszaniny dwóch gazów jednoatomowych w stosunku 1:1, w której 
kaŜdy atom gazu A oddziałuje (połączył się w cząsteczkę) z jednym atomem gazu B.   

Równość średnich energii kinetycznych cząsteczek o róŜnych masach, róŜnych gazów o tej 
samej temperaturze, obowiązuje takŜe dla mieszaniny tych gazów.  MoŜna pokazać, Ŝe jest to 
zgodne z prawem Daltona.   

Mieszamy ze sobą dwa gazy i z prawa Daltona mamy: 

21 PPP += .  

KaŜde z ciśnień P1 i P2 spełnia równanie: 
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Po wyrównaniu się temperatur,  

( ) NkTkTNNPV 21 =+=  

co oznacza, Ŝe:  
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czyli, Ŝe  
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Bezpośrednia wymiana energii poprzez zderzenia pomiędzy cząsteczkami róŜnych gazów w 
mieszaninie prowadzi do równości średnich energii kinetycznych cząsteczek obu gazów.  
Oczywiście ciśnienia cząstkowe wywierane przez oba gazy będą róŜne i zaleŜne od koncen-
tracji cząsteczek (Ni/V) obu gazów.  Dotyczy to takŜe sytuacji gdy cząsteczki obu gazów są 
atomami.   
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Wracamy teraz do naszej mieszaniny gazów A i B w stosunku 1:1 (czyli do gazu dwuatomo-
wego).  Przy zderzeniach, które prowadzą do wymiany energii i do ustalenia równowagi waŜ-
ne są tylko prędkości atomów, a nie oddziałujące pomiędzy nimi siły.  Przyjmujemy zatem, Ŝe 
w stanie równowagi średnie energie kinetyczne atomów A i B muszą być równe tak samo, jak 
w mieszaninie nieoddziałujących gazów A i B: 
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PoniewaŜ: 
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Średnia energia kinetyczna ruchu postępowego (środka masy) cząsteczki AB będzie zatem 
równa: 
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gdyŜ: 

0vv
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bo względny ruch atomów w cząsteczce jest całkowicie przypadkowy. 

1.6. Średnia energia kinetyczna ruchu postępowego i wewnętrznego cząsteczki dwuato-
mowej 

Z jednej strony mamy zatem, (6): 

kT
2

3

2

vm

2

vm

______
2
BB

______
2
AA ==  

co oznacza, Ŝe całkowita energia kinetyczna cząsteczki dwuatomowej jest równa: 
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z drugiej zaś wiemy, Ŝe średnia energia kinetyczna związana z ruchem środka masy wynosi: 
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E
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SM,k = ,  

czyli wynosi kT
2

1
 na kaŜdy tzw. stopień swobody (kierunki x, y, z) dla tego ruchu, podobnie 

jak dla cząsteczki jednoatomowej.  Oznacza to, Ŝe dla cząsteczki dwuatomowej brakująca 
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energia, równa kT
2

3
 jest średnią energią kinetyczną ruchu wewnętrznego cząsteczki dwu-

atomowej, czyli moŜna ją przyporządkować stopniom swobody związanym z obrotami wokół 
środka masy i oscylacji.   

1.7. Zasada ekwipartycji energii 

Patrząc na rys. 5.4 równowaŜność obrotów wokół dwóch osi prostopadłych do osi wiązania w 
cząsteczce dwuatomowej jest oczywista.  Moment bezwładności wokół trzeciej osi będzie 
natomiast, dla gazu doskonałego (punktowe atomy) równy zeru i, podobnie jak dla atomu, 
energia kinetyczna związana z obrotami wokół trzeciej osi dla cząsteczki dwuatomowej, jak i 
wokół trzech osi dla atomu, musi być równa zeru.  Dla skończonego atomu w klasycznym 
podejściu byłby kłopot, ale argumentu dostarcza podejście kwantowe.  Skończony, choć mały 
moment bezwładności oznaczałby, Ŝe częstości obrotów wokół tych osi byłyby bardzo duŜe 
co oznacza z kolei, Ŝe duŜe teŜ byłyby energie kwantów skojarzonych z tymi ruchami.  To zaś 

oznacza, Ŝe dany ruch w stosunkowo 
niewysokich temperaturach nie będzie 
miał miejsca.   

 

Rys. 5.4. Modele cząsteczek gazu, jednoato-

mowego i dwuatomowego.  Kule przedsta-

wiają atomy a linia łącząca atomy; wiązanie 

chemiczne.  Dla cząsteczki dwuatomowej 

pokazano dwie  równowaŜne osie obrotu.   

 

 

Ostatecznie zatem, jeśli przyjmiemy, Ŝe 
pojedynczy atom nie ma energii kine-
tycznej obrotów i Ŝe cząsteczka dwuato-

mowa nie ma trzeciej osi obrotów, to na kaŜdy stopień swobody musi przypadać ta sama 
energia:  

ENERGIA NA STOPIEŃ SWOBODY = kT
2

1
    (8) 

Stwierdzenie to nosi nazwę zasady ekwipartycji energii (równego podziału energii) pomiędzy 
róŜne stopnie swobody cząsteczek gazu.   

1.8. Energia wewnętrzna gazu doskonałego wieloatomowego 

Dla cząsteczki zbudowanej z r atomów liczba stopni swobody wynosi 3r, po trzy na atom.  
Całkowita energia kinetyczna wyniesie wobec tego (3/2)rkT, z tego energia kinetyczna ruchu 
ŚM (ruchu postępowego) to (3/2)kT, a energia kinetyczna przypadająca na pozostałe stopnie 
swobody (obroty i oscylacje, bez energii potencjalnej) wyniesie (3/2)(r-1)kT 

Jak wiadomo, średnia energia potencjalna oscylatora harmonicznego jest równa jego średniej 
energii kinetycznej; a wiec uwzględnienie energii potencjalnej będzie polegało na dodaniu 
(1/2)kT na kaŜdy oscylacyjny stopień swobody.   

Całkowita energia wewnętrzna gazu dwuatomowego wyniesie zatem: 

He O2
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kT
2

7
NkT

2

1
1kT

2

1
1kT

2

1
2kT

2

1
3NU ⋅=







 ⋅+⋅+⋅+⋅⋅= .   (9) 

Energia wewnętrzna gazu dwuatomowego bez oscylacji (uzasadnienie tzw. wymraŜania oscy-
lacyjnych i rotacyjnych stopni swobody obniŜającym energię wewnętrzną U dla niŜszych 
temperatur wynika z teorii kwantowej, zobacz  np. Feynmana wykłady z fizyki).będzie rów-
na: 

kT
2

5
NkT

2

1
2kT

2

1
3NU ⋅=







 ⋅+⋅⋅= .     (10) 

Dla większych cząsteczek, dla których liczba atomów wynosi 2r > , bez oscylacji (mamy 
zatem 6 stopni swobody, 3 dla ruchu postępowego środka masy i 3 dla obrotów): 

NkT3kT
2

6
NkT

2

1
3kT

2

1
3NU =⋅=







 ⋅+⋅⋅= .    (11) 

Uwzględnienie oscylacji zwiększa U o (3r-6)NkT do: 

( )kT1rN3U −= .        (12) 

Udział lub brak udziału oscylacji w energii wewnętrznej jest efektem kwantowym i zaleŜy od 
temperatury. 

Z otrzymanych wyraŜeń wynika, Ŝe energia wewnętrzna gazu jedno-, dwu- i wieloatomowego 
zaleŜy tylko od temperatury i ilości gazu (liczba cząsteczek N), nie zaleŜy od ciśnienia czy 
objętości gazu.  Wniosek ten potwierdza tzw. doświadczenie Joule’a.   

 

Rys. 5.5.  Doświadczenie Joule’a (1843 r.),   

 

W doświadczeniu tym dwa zbiorniki połączone rurką 
z kranem zanurzone są w kąpieli wodnej.  Początko-
wo zbiornik A zawierał spręŜone powietrze (22 atm), 
a zbiornik B był odpompowany.  Po otwarciu kranu 
część powietrza przepłynęła do zbiornika B.  Po usta-
leniu równowagi termodynamicznej, termometr mie-
rzący temperaturę kąpieli wodnej nie wykazał zmia-
ny temperatury (z dokładnością 0,01 K), co oznacza, 
Ŝe nie było transferu ciepła pomiędzy powietrzem w 
obu zbiornikach traktowanym jako jeden układ, a 
kąpielą wodną.  PoniewaŜ powietrze nie wykonało 
takŜe pracy zewnętrznej z I zasady termodynamiki 
moŜna wywnioskować, Ŝe energia wewnętrzna po-

wietrza nie zmieniła się, pomimo zmian ciśnienia i objętości. 

Oznacza to, Ŝe wzrost energii gazu spręŜonego w zbiorniku B jest równy energii straconej 
przez gaz w zbiorniku A na wykonanie pracy spręŜania.  (Wariant tego doświadczenia, w 
którym oba zbiorniki umieszczone są w dwóch niezaleŜnych kąpielach wodnych, potwierdza 
ten wniosek.)  Powietrze jako całość nie zmieniło energii i temperatury.  W oparciu o to do-
świadczenie sformułowano tzw. prawo Joule’a: Energia wewnętrzna gazu doskonałego zaleŜy 

tylko od jego temperatury.   

 

termometr

zbiornik

A
zbiornik

B

325,12 K


